
December, 2014

ALPHA OMEGA

U.S. Office:

Toll Free 1-877-919-6288

Fax 1-877-471-2055

Europe Office:

Toll Free: 00-800-2-574-2111

Tel +49-7-251-440-6620

Home Office:

Nazareth Industrial Park Building, Mount
Precipice

P.O. Box 2268 Nazareth 1612102, Israel.

Tel. 972-4-6563-327 Fax: 972-4-6574-075

Email: info@alphaomega-eng.com

Website: www.alphaomega-eng.com

Neuro Omega™

Physiological Navigation System for
Neurosurgery

and Neurophysiological Clinical Applications

Neuro Omega SDK User Manual
Version 1.3

Refer to Neuro Omega User Manual

mailto:info@alphaomega-eng.com
http://www.alphaomega-eng.com/

Neuro Omega SDK User Manual V1.3 Page 2

PROPRIETARY NOTICE

This publication, or parts thereof, contains information proprietary to Alpha Omega

Engineering and may not be reproduced, recorded or transmitted in any form, by any

method, for any purpose without written permission from Alpha Omega Engineering.

Alpha Omega Engineering Ltd. makes no warranty, expressed or implied, including but

not limited to any implied warranties of merchantability or fitness for a particular

purpose or use, regarding these materials and makes such materials available solely on

an “as-is” basis.

In no event shall Alpha Omega Engineering Ltd. be liable to anyone for specific,

collateral, incidental, or consequential damages in connections with or arising from

purchase or use of these materials. The sole and exclusive liability to Alpha Omega

Engineering Ltd., regardless of the form of actions, shall not exceed the purchase price of

the materials described herein.

The Neuro Omega and Alpha Omega are trademarks of Alpha Omega Engineering Ltd.

For additional information on the device, including questions on infection control

procedures, please contact:

Contact Information: Name and Address of the European

Authorized Representative:

ALPHA OMEGA ENGINEERING

Nazareth Industrial Park Building

Mount Precipice

P.O. Box 2268

Nazareth 1612102

Israel

Tel: +972-4-656-3327

Fax: +972-4-657-4075

Email:

info@alphaomega-eng.com

support@alphaomega-eng.com

http://www.alphaomega-eng.com

Mr. Yousef Bsoul

Europe Sales Manager

Alpha Omega GmbH

Ubstadter Str. 28

Ubstadt-Weiher,76698

Germany

Tel: +49 (0) 7251-4406620

Fax: +49 (0) 7251-2391034

Toll free: 00-800-2574-2111

Email:

info-EU@alphaomega-eng.com

http://www.alphaomega-eng.com

U.S. Office: Toll Free: 1-877-919-6288, Fax: 1-877-471-2055

Europe Office: Toll Free: 00-800-2-574-2111, Tel +49-7-251-440-6620

mailto:info@alphaomega-eng.com
mailto:support@alphaomega-eng.com
http://www.alphaomega-eng.com/
mailto:info-EU@alphaomega-eng.com
http://www.alphaomega-eng.com/

Neuro Omega SDK User Manual V1.3 Page 3

Contents

1 Overview ...4
1.1 Regulatory .. 4

1.1.1 Adverse Effects ... 4
1.1.2 FDA System Classification .. 4

1.2 Intended Uses .. 5
1.3 Conditions of Use .. 5
1.4 Warnings .. 6
1.5 Electromagnetic Conformance .. 7

2 Software Development Kit Research Capabilities11

2.1 Software Development Kit Research Overview .. 11
2.2 Connecting External Systems .. 11
2.3 Controlling Stimulation Paradigms through Coding 13

2.3.1 Preparing the External Computer .. 13
2.3.2 MATLAB Functions and Usage .. 15

2.3.3 C++ Functions and Usage ... 34

3 Technical Specifications ..53

4 Use Case Code ...54

4.1 MATLAB Use Case #1 .. 54
4.2 MATLAB Use Case #2 .. 55
4.3 MATLAB Use Case #3 .. 56

5 Troubleshooting Guidline ..57

 5.1 MEX Compiler Error ... 57
5.2 Missing Runtime Libraries ... 58
5.3 Supported and Compatible Compilers – Release 2010B 59

Neuro Omega SDK User Manual V1.3 Page 4

1 Overview

The Neuro Omega is a physiological navigation system intended for different

neurosurgery and neurophysiological clinical applications, including recording from and

stimulating brain motor and sensory neurons to accurately navigate for neurosurgery

target localization in treatment of movement disorders and to aid in the placement of

depth electrodes.

The system records and stimulates brain peripheral-nerve electrical activity from various

areas of the brain (deep structures and surface areas).

The device is also designed to measure bioelectric signals produced by muscles (EMG)

and stimulate peripheral nerves to aid in the diagnosis and prognosis of neuromuscular

disease for target localization surgeries for motor movement disorders or for intra-

operative skeletal muscles activity. This can be done with recording or stimulation.

The device may also be used to measure and record the electrical activity of the patient's

brain, obtained by placing two or more electrodes on the head (EEG). This is for cortical

and surface electrical activity levels of the brain.

The device is also designed for temporary monitoring of brain electrical activity from

deep or cortical brain during neurosurgery in the operating room or outside the clinical

environment.

1.1 Regulatory

1.1.1 Adverse Effects

The possible adverse effects relating to Sterotactic Neurosurgery are:

 The possibility of intracranial hemorrhage associated with the introduction

of probes into the brain.

 Visual field impairment with optic tract injuries.

 Contra lateral motor deficit with corticospinal injury.

1.1.2 FDA System Classification

 Product Code: GZL

 Subsequent Product Code: GWF, IKN, GWQ

 CFR Section: 21 CFR 882.1330

 Regulation Name: Depth electrode

 Subsequent Regulation Names:

 Electroencephalograph

 Stimulator

 Electrical

 Evoked response

Neuro Omega SDK User Manual V1.3 Page 5

 Electromyograph

 Diagnostic

 Trade Name: Neuro Omega System

 Common Name: lntraoperative neurophysiological recording and

stimulating device

 Classification: Class II

1.2 Intended Uses

The Neuro Omega System is intended for the following:

 Assisting neurosurgeons in the operating room during functional

neurosurgery

 Recording from and stimulating brain motor and sensory neurons to aid in

the placement of depth electrodes

 Monitoring, recording, and displaying the bioelectric signals produced by

muscles

 Stimulating peripheral nerves

 Monitoring, recording, and displaying the electrical activity produced by

nerves (EMG) for aiding the clinician in the diagnosis and prognosis of

neuromuscular disease.

 Measuring and recording the electrical activity of the patient's brain obtained

by placing two or more electrodes on the head (EEG).

1.3 Conditions of Use

The device may be used by medical personnel within a hospital, laboratory, clinic, or

nursing home setting, or outside of a medical facility under direct supervision of a

medical professional. The device may also be placed in the intensive care unit or

operating room for continuous recording.

The following are the Neuro Omega system use conditions:

 Environment:

 Conditions of visibility:

 Ambient luminance range: Normal

 Viewing distance: N/A

 Viewing angle: N/A

 Physical:

 Temperature range: 0°C to +40°C

 Relative humidity range: 10% - 80%, non-condensing

 Ambient pressure range: 500 hPa to 1060 hPa

Neuro Omega SDK User Manual V1.3 Page 6

 Background sound pressure level: Normal

 Frequency of Use: As per specific case

 Mobility: Mobile

1.4 Warnings

 Warnings:

 This is a Class A product. In a medical environment this product may cause
radio interference in which case the user will be required to take
adequate measures.

 Only qualified personnel, who have been trained by Alpha Omega Ltd.,
should be allowed to operate this equipment.

 Any modifications made to the equipment without explicit approval from
Alpha Omega Ltd., voids warranty and service contract obligations, and
poses a potential safety threat to both operators and patients.

 Do not install any software packages (Matlab, C++, SDK software or other)
on the system unless provided by Alpha Omega Ltd. for the explicit use on
the Neuro Omega.

 Neuro Omega system and Neuro Omega drive should be connected to Alpha
Omega NeuroProbes for recording and stimulation

 External systems connected to the Neuro Omega must be independently
isolated, or powered through the trolley, as this has its own isolation
transformer.

 The Neuro Omega system should be placed outside of the patient
environment or any area that can, intentionally or unintentionally, come
in contact with the patient.

 A thorough understanding of the technical principles, clinical applications,
and risks associated with this treatment is necessary before using this
system. Please read this entire manual before attempting to activate the
system. Completion of the training program is required prior to use of the
Neuro Omega system.

 The analog and digital input output panel (ADIO) is not an applied part,
and therefore should not be connected to the patient without proper
electrical isolation.

 Cautions:

 US federal law restricts the sale of this device to or on the order of a
physician.

 Discard according to the local regulations and law.

 Notes:

 The Neuro Omega system is provided non-sterile or sterile. Please refer to
the Neuro Omega Manual for detailed sterilization instructions of system
and accessories.

 It is the user’s responsibility to qualify any deviations from the
recommended method of processing.

Neuro Omega SDK User Manual V1.3 Page 7

 Please contact the manufacturer or local distributor to request a copy of
the insulation diagram if needed.

 This product has been tested and found to comply with the limits for Class
a Medical Device according to IEC 60601-1 and IEC 60601-1-2 Standards.
The limits for Class A equipment were derived for medical environments to
provide reasonable protection against interference with licensed

communication and medical equipment.

1.5 Electromagnetic Conformance

The following tables contain information on electromagnetic emissions for guidance and

manufacturer’s declaration:

 Guidance and Manufacturer’s Declaration – Electromagnetic Emissions

 Guidance and Manufacturer’s Declaration – Electromagnetic Immunity

 Recommended Separation Distances between Portable and Mobile RF

Communications Equipment and the Neuro Omega

 Notes:

 This product has been tested and found to comply with the limits for Class
a Medical Device according to IEC 60601-1 and IEC 60601-1-2 Standards.
The limits for Class A equipment were derived for medical environments to
provide reasonable protection against interference with licensed
communication and medical equipment.

 This product must be installed and put into service according to the EMC

information provided in the tables below.

 Portable and mobile RF communications equipment can affect this
product.

 Warnings:

 This is a Class A product. This product is intended for use by healthcare
professionals only. This equipment/system may cause radio interference or
may disrupt the operation of nearby equipment. It may be necessary to
take mitigation measures, such as re-orienting or relocating the Neuro
Omega or shielding the location.

 The use of accessories, transducers, and cables other than those specified
by the manufacturer may result in increased emissions or the decreased
immunity of the Neuro Omega.

 The Neuro Omega should not be used adjacent to or stacked with other
equipment. If adjacent of stacked use is necessary, the Neuro Omega
should be observed to verify normal operation in the configuration in
which it will be used.

The Neuro Omega is intended for use in the electromagnetic environment specified in

Table 1. The user of the Neuro Omega should assure that it is used in such an

environment.

Table 1: Guidance and Manufacturer’s Declaration – Electromagnetic Emissions

Neuro Omega SDK User Manual V1.3 Page 8

Emissions Test Compliance Electromagnetic Environment Guidance

RF emissions CISPR 11 Group 1

The Neuro Omega uses RF energy only for its internal

function. Therefore, its RF emissions are very low and are

not likely to cause any interferences in nearby electronic

equipment.

RF emissions CISPR 11 Class A

The Neuro Omega is suitable for use in all establishments

other than domestic, and may be used in domestic

establishments and those directly connected to the public

low-voltage power supply network that supplies buildings

used for domestic purposes.

Harmonic emissions

IEC 61000-3-2
Class A

Voltage fluctuations/flicker

emissions

IEC 61000-3-3

Complies

The Neuro Omega is intended for use in the electromagnetic environment specified in

Table 2. The customer or the user of the Neuro Omega should assure that it is used in

such an environment.

Table 2: Guidance and Manufacturer’s Declaration – Electromagnetic Immunity

Immunity Test
IEC 60601 test

level
Compliance

Electromagnetic Environment

Guidance

Electrostatic discharge (ESD)

IEC 61000-4-2

±6kV contact

±8kV air

±6kV contact

±8kV air

Floors should be wood, concrete or

ceramic tile. If floors are covered

with synthetic material, the relative

humidity should be less than 30%.

Electrostatic fast

transient/burst

IEC 61000-4-4

±2kV for power

supply lines

±1kV for

input/output

lines

±2kV for power

supply lines

±1kV for

input/output

lines

Mains power quality should be that of

a typical commercial or hospital

environment.

Surge

IEC 61000-4-5

±1kV line(s) to

line(s)

±2kV line(s) to

earth

±1kV line(s) to

line(s)

±2kV line(s) to

earth

Mains power quality should be that of

a typical commercial or hospital

environment.

Voltage dips, short

interruptions and voltage

variations on power supply

input lines

IEC 61000-4-11

<5% UT for 0.5

cycles

40% UT for 5

cycles

70% UT for 25

cycles

<5% UT for 5 s

<5% UT for 0.5

cycles

40% UT for 5

cycles

70% UT for 25

cycles

<5% UT for 5 s

Mains power quality should be that of

a typical commercial or hospital

environment. If the user of the Neuro

Omega requires continued operation

during power mains interruptions, it is

recommended that the NeuroOmega

be powered from an uninterruptible

power supply battery.

Power frequency (50/60 Hz)

magnetic field

IEC 61000-4-8

3 A/m 3 A/m

Mains power quality should be that of

a typical commercial or hospital

environment.

Neuro Omega SDK User Manual V1.3 Page 9

Conducted RF

IEC 61000-4-6

Radiated RF

IEC 61000-4-3

3 Vrms 150 kHz

to 80 MHz

3 V/m 80 MHz

to 2.5 GHz

3 Vrms 150 kHz

to 80 MHz

3 V/m 80 MHz

to 2.5 GHz

Portable and mobile RF

communications equipment should be

used no closer to any part of the

NeuroOmega, including cables, than

the recommended separation distance

calculated from the equation

applicable to the frequency of the

transmitter.

Recommended separation distance:

d=1.2√P

d=1.2√P 80 MHz to 800 MHz

d=2.4√P 800 MHz to 2.5GHz

Where P is the maximum output

power rating of the transmitter in

watts (W) according to the

transmitter manufacturer and d is the

recommended separation distance in

meters (m).

Field strength from fixed RF

transmitters, as determined by an

electromagnetic site survey,1 should

be less than the compliance level in

each frequency range.2

Interference may occur in the vicinity

of equipment marked with the

following symbol:

 Notes:

 At 80 MHz and 800 MHz, the higher frequency range applies.

 These guidelines may not apply in all situations. Electromagnetic
propagation is affected be absorption and reflection from structures,

objects and people.

1. Field strength from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and

land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted

theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters,

an electromagnetic site survey should be considered. If the measured field strength in the location in

which the Neuro Omega is used exceeds the applicable RF compliance level above, the Neuro Omega

should be observed to verify normal operation. If abnormal performance is observed, additional

measures may be necessary, such as re-orienting or relocating the Neuro Omega.

2. Over the frequency range 150 kHz to 80 MHz, field strength should be less than 3 V/m.

Neuro Omega SDK User Manual V1.3 Page 10

The Neuro Omega is intended for use in the electromagnetic environment in which

radiated RF disturbances are controlled. The customer or the user of the Neuro Omega

can help prevent electromagnetic interference by maintaining a minimum distance

between portable and mobile RF communications equipment (transmitters) and the

Neuro Omega as recommended in Table 3, according to the maximum output power of

the communications equipment.

Table 3: Recommended Separation Distances between Portable and Mobile RF
Communications Equipment and the Neuro Omega

Rated maximum output

power of transmitter

W

Separation distance according to frequency of transmitter

m

150 kHz to 80 MHz

d=1.2√P

80 MHz to 800 MHz

d=1.2√P

800 MHZ to 2.5 GHz

d=2.4√P

0.01 0.12 0.12 0.24

0.1 0.37 0.37 0.74

1 1.2 1.2 2.4

10 3.7 3.7 7.4

100 12 12 24

For transmitters rated at maximum output power not listed above, the recommended separation distance d

in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where p is

the maximum output power rating of the transmitter in watts (W) according to the transmitter

manufacturer.

 Notes:

 At 80 MHz and 800 MHz, the separation distance for the higher frequency
range applies.

 These guidelines may not apply in all situations. Electromagnetic
propagation is affected by absorption and reflection from structures,

objects and people.

Neuro Omega SDK User Manual V1.3 Page 11

2 Software Development Kit Research Capabilities

2.1 Software Development Kit Research Overview

Aside from basic stimulation as described in the Neuro Omega Manual there is an

additional method for controlling stimulation paradigms and completing data analysis:

 Coding: For greater control and complexity, code and run the stimulation

paradigms through the MATLAB or C++ tool on an external computer.

Coding is described in section 2.3.

 Note: Some advanced research capabilities involve external systems.

Connecting these systems is described in section 2.2.

2.2 Connecting External Systems

This procedure describes how to connect any external systems to the Alpha Omega, such

as:

 External analog or digital input or output systems

 The computer running MATLAB or C++

 External monitors

You can power the systems through the trolley’s isolation transformer, or through an

independent isolation transformer.

 Warning:

   External systems connected to the Neuro Omega must be
independently isolated, or powered through the trolley, as this has
its own isolation transformer.

   External systems connected to the Neuro Omega by Ethernet port

must include Ethernet Isolator in line.

To power an external system:

a. Do one of the following:

 Power the system through the trolley’s isolation transformer (see Figure

1: Neuro Omega Trolley Side View) as follows:

i. On the base of the Main Unit, remove the cover to the isolation

transformer.

ii. Plug the external computer in to the transformer.

iii. Return the cover, threading the power cord parallel to the Neuro

Omega system’s power cord.

 Power the system through an independent isolation transformer.

Neuro Omega SDK User Manual V1.3 Page 12

On the Input/output panel, connect the system to the required connection.

Repeat steps a and 0 for each system you want to connect.

Figure 1: Neuro Omega Trolley Side View

To connect the MATLAB or C++ ethernet connection:

a. Use a Cat6 ethernet cable and connect the external computer to the

Neuro Omega (see Figure 1: Neuro Omega Trolley Side View) as follows:

i. On the base of the Main Unit, plug in the ethernet cable to one of

the open ports (see Figure 2: Bottom of Main Unit)

ii. Plug the ethernet cable to Ethernet Isolator (pay attention to

direction).

iii. Plug another ethernet cable to the Matlab or C++ computer.

iv. Plug the other ethernet cable to the Ethernet Isolator.

System Handle

Headbox

Modules and

Remote

Storage

Power cable

USB Ports

Main unit power

and switch,

Ethernet

connections,

Audio output and

USB Remote

Isolation

Transformer

Neuro Omega SDK User Manual V1.3 Page 13

Figure 2: Bottom of Main Unit

2.3 Controlling Stimulation Paradigms through Coding

This procedure describes how run code using MATLAB to control stimulation

paradigms. Running code affords more control over the paradigms and the ability to run

additional signal processing needs.

Coding and running the code is performed on an external computer.

To control stimulation paradigms through coding:

1. Connect the external computer as described in section 2.2.

2. With an ethernet cable, connect the external computer to the Main Unit

described in section 2.2.

3. Prepare the external computer, as described in 2.3.1.

4. Write the code the MATLAB functions as commands, using 2.3.2 as a guide.

2.3.1 Preparing the External Computer

This procedure describes how to prepare the external computer in order to use the

MATLAB tool and connect to the Neuro Omega system.

To prepare the external computer for using MATLAB:

1. Install MATLAB Tool by running the supplied setup file and following the

on screen instructions.

2. Start MATLAB, as follows:

b. Open MATLAB.

 Note:

 With Windows 7, you may need to run MATLAB as Administrator, or change

the user settings to lower administrative control.

c. Set the working directory path in MATLAB to the installed MATLAB

Tool Directory, for example, as follows:

Neuro Omega SDK User Manual V1.3 Page 14

C:\Program Files(x86)\AlphaOmega\AO_MATLABTool

 Note: If you have MATLAB 2014a and you have the visual distribution
library 2010 for 64bit then the next step you don’t have to go over

them and start with step

d. Set up the compiler and compile the MEX file, as follow:

1. In the MATLAB command window, type mex –setup, and then press

ENTER.

2. A MATLAB message appears in the command window:

 Would you like mex to locate installed compilers [y]/n?]

3. Press n.

 MATLAB suggests a list of all supported compilers.

4. Select a version of Microsoft Visual, such as Microsoft Visual C++

2008 or 2010.

 Note: If you do not have the compiler on your PC, you need to install it

before continuing (express mode is downloaded for free).

5. Continue the procedure for choosing the compiler by answering the

questions in the wizard. For the path validation, if the path is correct,

answer y to all questions.

6. Make sure that compiler is existing using the following command:

 cc = mex.getCompilerConfigurations()

if there is no compiler follow the troubleshooting guideline.

7. Compile the MEX files as follows:

 run the following in the MATLAB command window:

for 32bits:

mex MexFileEthernetStandAlone.cpp
Include\ethernetStandAlone.lib

for 64bits:

mex MexFileEthernetStandAlone.cpp
Include\ethernetStandAloneX64.lib

 The following results:

i. The MexFileEthernetStandAlone.cpp file is compiled.

ii. A MEX file is created, called MexFileEthernetStandAlone.mexw32.

iii. Installation concludes

iv. If the compile fails, see Troubleshooting Section 5

e. Test the installation by doing one of the following:

 In the MATLAB command window, type AO_IsConnected, and then

press ENTER.

Neuro Omega SDK User Manual V1.3 Page 15

If no compilation error appears, which is usually indicated by red

colored messages, installation was successful.

Else see Troubleshooting Section 5

2.3.2 MATLAB Functions and Usage

Complete syntax of each MATLAB function is provided in Table 4, as well as syntax,

descriptions and examples.

 Provides a list of function return cases.

Table 4: MATLAB Functions

Function Function syntax and example

AO_DefaultStartConnection Syntax:

[Result] = AO_DefaultStartConnection(DspMac)

Function:

Used to connect MATLAB to Neuro Omega system

Result:

Function return is an integer, 0 = no function errors, other number

indicate function error (see 6)

Function parameters:

 DspMac: String of 6 hex values. This is the mac address of the

Neuro Omga system

It is preferable to ensure connection was done successfully by calling

the function AO_IsConnected

Example:

DSPMac='00:21:ba:07:ab:9e';

retStartConnection=AO_DefaultStartConnection(DSPMac)
;

Add the following code to insure proper connection:

for j=1:100,

 pause(1);

 ret=AO_IsConnected;

 if ret==1

 'The System is Connected'

 break;

 end

end

After a successful connection, the PcMac address will appear in the

menu, Help > User Info, as illustrated in Figure 3.

Neuro Omega SDK User Manual V1.3 Page 16

Function Function syntax and example

Figure 3: MAC Addresses Including MATLAB Computer

AO_IsConnected

Syntax:

[Results] = AO_IsConnected()

Function:

Checks if MATLAB is connected to Neuro Omega

Result:

Returns 1 if the system is connected, otherwise returns 0

Example:

for j=1:100,

 pause(1);

 ret=AO_IsConnected;

 if ret==1

 'The System is Connected'

 break;

 end

end

AO_CloseConnection

Syntax:

[Result] = AO_CloseConnection()

Function:

Used to close connection between MATLAB and the Neuro Omega

system

Result:

Neuro Omega SDK User Manual V1.3 Page 17

Function Function syntax and example

Function returns an integer, 0 = no function errors, other number

indicate function error (see 6)

Example:

Result=AO_CloseConnection();

if (Result==0)

 display('Connection closed successfully');

else

 display('Connection close error');

end

AO_AddBufferingChannel

Syntax:

[Result] =
AO_AddBufferingChannel(ChannelID,BufferSizemSec)

Function:

Used to gather data for the channel defined in ChannelID

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

 ChannelID: The channel ID we want to gather data for

 BufferSizemSec: The size of the buffer in mSec.

 Notes:

 The function stores the data using First In First Out (FIFO)

mechanism.

 The data value is A\D value including gain.

Example:

 ChannelID=10256; % set the channel number

BufferSizemSec = 10000; % set the size of the buffer
in mSec

AO_AddBufferingChannel(ChannelID, BufferSizemSec)%
start gathering data for channel 10256

AO_GetAlignedData

Syntax:

[Result,pData,DataCapture,TS_FirstSample]=
AO_GetAlignedData(ChannelIdArr,ChannelCount)

Function:

Used to get aligned data for several channels

Result:

Neuro Omega SDK User Manual V1.3 Page 18

Function Function syntax and example

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

 ChannelIdArr: Array of channels which we need to get data for,

all channels must have the same sampling rate

 ChannelCount: Number of channels listed in ChannelIdArr

 pData: Array of data samples of all listed channels, be arranged

in single row

 DataCapture: The amount of the useable data captured in the

pData array

 TS_FirstSample:The timestamp of the first sample for each

channel

 Notes:

 In order to get data you need to use

AO_AddBufferingChannel first.

 In order to get real time data u need to clear the buffered

data first using AO_ClearChannelData function before using

both commands AO_GetAlignedData, AO_GetChannelData

otherwise u will get stored data

 pData will contain samples of data for all channels ,the

number of valid samples in this array is DataCapture so

make sure that you only get DataCapture samples. Hence,

number of samples for each channel is DataCapture divided

by ChannelCount.

 In pData samples are arranged in a single array for all

channels, starting with samples of the first channel listed in

the ChannelIdArr, followed by other channels consecutively

and in the same order.

 The data value is A\D including gain

Example:

ChannelIdArr=[10000,10001,10002];

ChannelCount=3;

 [Result,pData,DataCapture,TS_FirstSample] =

AO_GetAlignedData(ChannelIdArr,ChannelCount);% get
aligned data from channels:10000,10001,10002 save
them in the array pData, the alignment is done by
time stamp TS_FirstSample

AO_GetChannelData

Syntax:

[Result,pData,DataCapture] =
AO_GetChannelData(ChannelId)

Function:

Neuro Omega SDK User Manual V1.3 Page 19

Function Function syntax and example

Used to get data for the specified channel

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

 ChannelId: The channel id which we want to get data for

 pData: Array of data

 DataCapture: The amount of the useable data in the array

 Note: The pData will contain a block of data in in the following

format, for example:

byte 1-2 : SizeOFtheBlock in words (1 word =2Byte)
including the samples in this block

byte 3 BlockType (in our case alwayes will be 'd'
or 100)

byte 4 Not used

byte 5-6 ChannelNumber the id of the channel this
block belongs to

byte 7 Unit number ,this value valid only for
segmented data

byte 8 Not used

byte 9-12 TimeStamp of the first sample of the
block you will have to reorder them [byte10 byte9
byte12 byte11]

byte 13-14 OverFlowCount the over flow of the time
stamp – Future use

byte 15-16 First sample

byte 17-18 Second sample

In order to calculate the number of samples in this channel, do the

following:

HeaderSize=14bytes

HeadrSizeWord=14bytes/2

samplescount=SizeOFtheBlock-HeaderSizeWord

 = (SizeOFtheBlock-14)/2

Example:

[Result,pData,DataCapture]=AO_GetChannelData(10256);

Neuro Omega SDK User Manual V1.3 Page 20

Function Function syntax and example

AO_ClearChannelData Syntax:

[Result] = AO_ClearChannelData()

Function:

Used to clear buffered data by command AO_AddBufferingChannel

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

 Note: In order to get real time data you need to clear the

buffered data first using AO_ClearChannelData function before using

both commands AO_GetAlignedData, AO_GetChannelData otherwise

you will get stored data.

Example:

AO_ClearChannelData()

AO_GetNextBlock Syntax:

[Result,arraydata,realDataSizeWords]=
AO_GetNextBlock(sizeOfArrayWords)

Function:

Used to get the next new block data, the data should be parsed using

StreamFormat.h file

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

 sizeOfArrayWords: The max size of data the array can contain

 arraydata: Pointer to an array to hold the new data ,the data

contain stream format in order to parse the data you need some

Knowledge in our stream Format

 realDataSizeWords: The count of the data copied to the array

data

 Note: StreamFormat.h file is saved in the include directory

Example:

realDataSizeWords=zeros(1,1);

[res,arraydata,realDataSizeWords]=AO_GetNextBlock(50
000);

 AO_SendBlock Syntax:

[Result] = AO_SendBlock(ArrayData)

Function:

Neuro Omega SDK User Manual V1.3 Page 21

Function Function syntax and example

Used to send stream format data to the Neuro Omega system

Result:

Return is an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

 ArrayData: Contain the data which will be sent to Neuro Omega

system

 Notes:

 This function for advanced users only.

 Stream format is explained in StreamFormat.h file

Example:

ArrayData=[7,1,2,3,4,5,6];

AO_SendBlock(ArrayData)

AO_StartSave Syntax:

[Result] = AO_StartSave();

Function:

Used to start saving mpx file by the Neuro Omega system

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

 Notes:

 The mpx file saved will contain the channels listed on the

Data logging Options in the Neuro Omega

 The filename and the saving path could be set before saving

using MATLAB commands: AO_SetSaveFileName, and

AO_SetSavePath.

 Or by the parameters defined in the data logging(default)

 When saving start the saving button in the Neuro Omega

GUI turns to red. See Neuro Omega Manual

Example:

[Result] = AO_StartSave()% start saving on the Neuro
Omeg

AO_SetSaveFileName Syntax:

[Result] = AO_SetSaveFileName(FileName)

Function:

Neuro Omega SDK User Manual V1.3 Page 22

Function Function syntax and example

Used to set mpx file name saved by Neuro Omega system

Result:

Function returns an integer, 0 = no function errors, other number

Indicate function error (see 6)

Function parameters:

 FileName: Contains the file name.

 Note: File name must be less than 30 chars.

Example:

fileName='TestFile';

AO_SetSaveFileName(fileName)%set the file name as
TestFile

 AO_StartSave()% start saving, the file name will be
testFile

AO_SetSavePath

Syntax:

[Result] = AO_SetSavePath(Path)

Function:

Used to set the path of the directory to save in the mpx file.

Result:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 Path: Contain the path of the directory for saving the files

Example:

 path='c:\logging_data\' ;%the path of the directory
to save in

 AO_SetSavePath(path)%set the path of the saving to
'c:\logging_data\'

 AO_StartSave()%start saving, the file will be saved
at 'c:\logging_data\'

AO_StopSave

Syntax:

[Result] = AO_StopSave()

Function:

Used to stop saving by Neuro Omega system

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Example:

fileName='TestFile’;

Neuro Omega SDK User Manual V1.3 Page 23

Function Function syntax and example

path='c:\logging_data\'; ;%

AO_SetSaveFileName(fileName);

AO_SetSavePath(path);

AO_StartSave();%

pause(100) ;

AO_StopSave();

Saving will be done for 100 sec, and the mpx file name is TestFile in

the c:\logging_data\.

AO_SendDout Syntax:

[Result] = AO_SendDout(mask, value);

Function:

Sends output to port number 11701

Result:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 Mask: is an 8 bit hex number input as a string. This variable

masks the value, any 1 bit number changes the corresponding bit

to the number in value. A 0 bit will leave the port unchanged

 Value: the value to insert the digital channel. The value can be

any number between 0 and 2^8-1

 Notes: Only lower case characters can be used in the mask

Example:

mask='0xFF'; %the mask (11111111)

value=0; %the value (00000000)

Result = AO_SendDOut(mask,value); %Initialize all
bits of port 11701 to 0

mask='0x05'; %the mask (00000101)

value=3; %the value (00000011)

Result = AO_SendDOut(mask,value); %set port 11701

 %====> The output of the bits on port 11701 will be
'0000 0001'

Mask=00000101

Value=00000011

Port= 00000001

AO_StartDigitalStimulation Syntax:

Neuro Omega SDK User Manual V1.3 Page 24

Function Function syntax and example

[Result] = AO_ StartDigitalStimulation(StimChannel,
FirstPhaseDelay_mS, FirstPhaseAmpl_mA,
FirstPhaseWidth_mS, SecondPhaseDelay_mS,
SecondPhaseAmpl_mA, SecondPhaseWidth_mS, Freq_hZ,
Duration_sec, ReturnChannel);

Function:

Function used to set the parameters and start stimulation using Neuro

Omega system for the specified StimChannel

Resuls:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

See Figure 4 for an illustration of the stimulation parameters.

Figure 4: Stimulation Parameters Illustration

 StimChannel: The channel we want to start stimulation on

 FirstPhaseDelay_mS: First phase delay in mSec (1)

 FirstPhaseAmpl_mA: First phase amplitude (4)

 FirstPhaseWidth_mS : The width of the first phase (3)

 SecondPhaseDelay_mS: Second phase delay in mSec (2)

 SecondPhaseAmpl_mA: Second phase amplitude (6)

 SecondPhaseWidth_mS: Second phase width (5)

 Freq_hZ: The stimulation frequency

 Duration_sec: Duration of the stimulation after which

stimulation stops

 ReturnChannel: The ID of the channel we want to return the

stimulation with(set -1 for Global return)

 Note: This function should be called before starting stimulation,

otherwise stimulation will be done using the parameters defined in

the SW GUI

Example:

Neuro Omega SDK User Manual V1.3 Page 25

Function Function syntax and example

StimChannel=10000;%the channel we want to start
stimualtion in

FirstPhaseDelay_mS=1.1;%the delay of the first phase

FirstPhaseAmpl_mA=-3.5;%the amp of the first phase

FirstPhaseWidth_mS=0.5;%the width of the first phase

SecondPhaseDelay_mS=1.5;%the delay of the second
phase

SecondPhaseAmpl_mA=1.5;%the amp of the second phase

SecondPhaseWidth_mS=0.2;%the width of the second
phase

Freq_hZ=10;%the frequency of the stimulation

Duration_sec=30;%duration of the stimulation

ReturnChannel=10001;%the ID of the channel we want
to return the stimulation with

AO_StartDigitalStimulation(StimChannel,FirstPhaseDel
ay_mS,FirstPhaseAmpl_mA,FirstPhaseWidth_mS,SecondPha
seDelay_mS,SecondPhaseAmpl_mA,SecondPhaseWidth_mS,Fr
eq_hZ,Duration_sec,ReturnChannel);%set stimulation
params and start stimulation

AO_StopStimulation Syntax:

[Results]=AO_StopStimulation(ChannelNumber);

Function:

Used to stops stimulation to the stimulation source of the

ChannelNumber

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 ChannelNumber: The ID of the channel used for stimulation

 Note: In order to stop stimulation in all channels use:

ChannelNumber= -1

Example:

ChannelNumber=10000;

AO_StopStimulation(ChannelNumber);

AO_LoadWaveToEmbedded Syntax:

[Results]=AO_ LoadWaveToEmbedded (pSource, SamplesCount,

downSampleFactor, waveName);

Function:

Used to take an analog wave and load it into the Neuro Omega system

Neuro Omega SDK User Manual V1.3 Page 26

Function Function syntax and example

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 pSource: array of data

 SamplesCount: number of samples (less than 8 milion)

 downSampleFactor: must be 2^N = 1, 2, 4, 8, 16

 waveName: The name of the wave

Example:

x=[0:0.1:180]

pSource = sin(x);

SamplesCount = 1500;

downSampleFactor = 2 ;

waveName = 'sin_wave';

[Result] = AO_LoadWaveToEmbedded(pSource,
SamplesCount, downSampleFactor, waveName)

AO_StartAnalogStimulation Syntax:

[Results]=AO_ StartAnalogStimulation (StimChannel, waveId, Freq_Hz,

Duration_sec, ReturnChannel);

Function:

Used to set the parameters for the analog stimulation and start

stimulation on the specified channel

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 StimChannel: the channel we want to start stimulation on

 waveId: The id of the wave

 Freq_Hz: the frequency of the stimulation

 Duration_sec: duration of the stimulation

 ReturnChannel: The ID of the channel we want to return the

stimulation with (set -1 for Global return)

Example:

StimChannel= 10256;

waveId= 1;

Freq_hZ=10; %the frequncy of the stimulation

Duration_sec=30 ;%duration of the stimulation

ReturnChannel=-1;

Neuro Omega SDK User Manual V1.3 Page 27

Function Function syntax and example

[Result] =
AO_StartAnalogStimulation(StimChannel,waveId,Freq_Hz
, Duration_sec, ReturnChannel)

AO_GetLatestTimeStamp Syntax:

[Results] = AO_GetLatestTimeStamp()

Function:

Used to get the last time stamp

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Examples:

[Result , lastTS] = AO_GetLatestTimeStamp()

AO_TranslateNameToID Syntax:

[Results] = AO_TranslateNameToID(ChannelName , nameLength)

Function:

Used to translate the name of the channel to his ID

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 ChannelName: the name of the channel

 nameLength: the length of the name we want to translate

Examples:

[Result ,channelID] =
AO_TranslateNameToID('LPF_01');

AO_SetChannelSaveState Syntax:

[Results] = AO_ SetChannelSaveState(channelID,stateSave)

Function:

Used to Check the checkbox in the Neuro Omega Gui in v if the

statesave=1 is on or unchecked if the statesave=0 is off

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

Neuro Omega SDK User Manual V1.3 Page 28

Function Function syntax and example

 channelID: the id of the channel

 stateSave: 1 is on, 0 is off

Examples:

for statesave =TRUE we will check the check box in v
channelID=10256
stateSave = 1;
[Result] = AO_SetChannelSaveState(channelID ,
stateSave)

for statesave =FALSE we will check the check box in
v
channelID=10256
stateSave = 0;
[Result] = AO_SetChannelSaveState(channelID ,
stateSave)

AO_SendDigitalData Syntax:

[Results] = AO_ SendDigitalData (DigitalChannelNumber, mask, value)

Function:

Used to sends digital data for specific Internal port ID

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 DigitalChannelNumber: the ID of the Internal port

 Mask: is an 8 bit hex number input as a string. This variable

masks the value, any 1 bit number changes the corresponding bit

to the number in value. A 0 bit will leave the port unchanged

 Value: the value to insert the digital channel. The value can be

any number between 0 and 2^8-1

 Notes: Only lower case characters can be used in the mask

Examples:

DigtalChannelNumber=11230 ;channel ID
mask='0x00'; %the mask
value=0; %the value

Result =
AO_SendDigitalData(DigtalChannelNumber,mask,value);
%Initialize port 11230 to 0

mask='0x05'; %the mask
value=3; %the value

Result =
AO_SendDigitalData(DigtalChannelNumber,mask,value);
%set port 11230

 %====> The output of the bits on port 11230 will be
'0000 0001'

Neuro Omega SDK User Manual V1.3 Page 29

Function Function syntax and example

AO_GetDriveDepth Syntax:

[Results, Depth] = AO_ GetDriveDepth ()

Function:

Used to get the drive position

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 Depth: the depth of the drive in um (microMeter)

Examples:

[Result , Depth] = AO_GetDriveDepth();

AO_SetThreshold Syntax:

[Results] = AO_ SetThreshold (ChannelID, ThresholdValue_uVolt,

Direction)

Function:

Used to set the thresh hold (level line) of a channel

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 channelID: contain the chanel id can be only SPIKE LFP OR

segmented of the same electrode

 ThreshHoldValue_uVolt: the value of the level line in

microVolts

 Direction : the detection 1->down 2->up

Examples:

ChannelID = 10256;
ThresholdValue = 100;
Direction = 1;
[Result] = AO_SetThreshold(ChannelID ,
ThresholdValue , Direction);

AO_SendTextEvent Syntax:

[Results] = AO_ SendTextEvent (text)

Function:

Used to send text to the mpx file with the current time stamp

Results:

Neuro Omega SDK User Manual V1.3 Page 30

Function Function syntax and example

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 Text: array of chars

Examples:

text = 'the text is in the mpx file';
[Result] = AO_SendTextEvent(text);

AO_CheckConnectionQuality Syntax:

[Results qualityType, qualityPercent] = AO_CheckConnectionQuality()

Function:

Used to check the quality of the connection of the system if its poor,

medium or high

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 qualityType: poor, medium or high

 qualityPercent: the rate of the quality connection in percent

Examples:

[Result, qualityType, qualityPercent] =
AO_CheckConnectionQuality();

AO_GetAllChannels Syntax:

[Results ,channelsData] = AO_ GetAllChannels (ChannelCount)

Function:

Used to return all the channels with their name and id

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 ChannelCount: number of channels the user want to see

 channelsData: a struct that include all the channels with two

fields: name and id

Examples:

ChannelCount=220;

[Result , channelsData] =
AO_GetAllChannels(ChannelCount)

AO_GetCutOffFC Syntax:

Neuro Omega SDK User Manual V1.3 Page 31

Function Function syntax and example

[Results, FCLP , FCHP] = AO_GetCutOffFC(ChannelID)

Function:

Used to return the cut-off frequency of the low and high pass filter

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 channelID: the id of the channel

 FCLP: will contain the cut-off frequency of the low pass filter

 FCHP: will contain the cut-off frequency of the high pass filter

Examples:

ChannelID = 10256;
[Result, FCLP , FCHP] = AO_GetCutOffFC(ChannelID)

AO_SetChannelName Syntax:

[Results] = AO_SetChannelName(ChannelID, newName)

Function:

Used to set a new name for the specified channel

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 channelID: the id of the channel

 newName: array of chars with the new name for the channel

Examples:

ChannelId = 10258 ;
newName = 'left Side';
[Result] = AO_SetChannelName(ChannelId , newName);

AO_GetChannelSaveState Syntax:

[Results, status] = AO_ GetChannelSaveState (ChannelId)

Function:

Used to get the save status of the specified channel

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 channelId: the id of the channel

 status: 1 if the save state is true, 0 if the save state is false

Neuro Omega SDK User Manual V1.3 Page 32

Function Function syntax and example

Examples:

ChannelId = 10256;
[Result , status] = AO_GetChannelSaveState(
ChannelId)

AO_GetStopMotorTS Syntax:

[Results, StopMotorTS] = AO_ GetStopMotorTS ()

Function:

Used to get the last time stamp when the motor stopped moving

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 StopMotorTS: the last time stamp when the motor stopped

Examples:

[Result , StopMotorTS] = AO_GetStopMotorTS()

AO_GetChannelsInformation Syntax:

information = AO_ GetChannelsInformation ()

Function:

Used to return struct that contain all the information about the

channels: name, id , LP frequency, HP frequency and save state

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 information: struct of information about the channels have 5

fields: name , id , LP frequency, HP frequency and save state

Examples:

information = AO_ GetChannelsInformation ()

Neuro Omega SDK User Manual V1.3 Page 33

2.3.3 C++ Functions and Usage

Function Function syntax and example

DefaultStartConnection Syntax:

int DefaultStartConnection(MAC_ADDR*core_macAdd ,
AOParseFunction) ;

Function:

Used to connect C++ to Neuro Omega system

Result:

Function return is an integer, 0 = no function errors, other number

indicate function error (see 6)

Function parameters:

 DspMac: String of 6 hex values. This is the mac address of the

Neuro Omga system

 AOParseFunction: pointer to function which will be called when

new data received from the embedded.

It is preferable to ensure connection was done successfully by calling

the function isConnected

Example:

MAC_ADDR dsp;
dsp.addr[0]=0xbc;
dsp.addr[1]=0x6a;
dsp.addr[2]=0x29;
dsp.addr[3]=0xe1;
dsp.addr[4]=0x49;
dsp.addr[5]=0xbf;
retStartConnection=DefaultStartConnection(&dsp , 0);

Add the following code to insure proper connection:

while(isConnected()==FALSE){

Neuro Omega SDK User Manual V1.3 Page 34

Function Function syntax and example

 AOSLEEP_MSEC(1);
}
 }
printf("\n Connect = %d \n" , connect);

After a successful connection, the PcMac address will appear in the

menu, Help > User Info, as illustrated in below.

Figure 5: MAC Addresses Including MATLAB Computer

isConnected

Syntax:

int isConnected();

Function:

Checks if C++ is connected to Neuro Omega

Result:

Returns 1 if the system is connected, otherwise returns 0

Example:

while(isConnected()==FALSE){

 AOSLEEP_MSEC(1);
}
 }
printf("\n Connect = %d \n" , connect);

CloseConnection

Syntax:

int CloseConnection()

Function:

Neuro Omega SDK User Manual V1.3 Page 35

Function Function syntax and example

Used to close connection between C++ and the Neuro Omega system

Result:

Function returns an integer, 0 = no function errors, other number

indicate function error (see 6)

Example:

Result=CloseConnection();

if (Result==0)

 printf("\n Connection closed successfully\n");

else

 printf("\n Connection close error\n");

AddBufferingChannel

Syntax:

int AddBufferingChannel(int ChannelID,int
BufferSizemSec)

Function:

Used to gather data for the channel defined in ChannelID

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

 ChannelID: The channel ID we want to gather data for

 BufferSizemSec: The size of the buffer in mSec.

 Notes:

 The function stores the data using First In First Out (FIFO)

mechanism.

 The data value is A\D value including gain.

Example:

 ChannelID=10256; // set the channel number

BufferSizemSec = 10000; // set the size of the
buffer in mSec

AddBufferingChannel(ChannelID, BufferSizemSec)
//start gathering data for channel 10256

GetAlignedData

Syntax:

int GetAlignedData(int16* pArray, int ArraySize,
int* actualData, int arrChannel,int sizearrChannels,
ULONG* TS_Begin);

Function:

Neuro Omega SDK User Manual V1.3 Page 36

Function Function syntax and example

Used to get aligned data for several channels

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

 pArray: this array must be allocatd by the user and the

function will insert the data into it

 ArraySize: the size of the array in words

 actualData: the actual data of the amount of data we inserted

into the pArray

 arrChannel: contain the list of channel we want to collect

data for

 sizearrChannels: the count of the channel

 TS_Begin: the timestamp of the first sample

Notes:

 In order to get data you need to use the
AddBufferingChannel first

 note that the function gets the data in FIFO , so at the
beginning you get the data stored by the buffering then u
start getting a real time data

 the data in the array will be sorted like the channels ,e.g. if
the channel are 10000,10001,10002 then the data will be
,data for channel 10000,data for channel 10001,data for
channel 10002. the amount of data for each channel Must
be the same == actualData/sizearrChannels

Example:

int16* pArray = new int16[100000];

int ArraySize = 10000;

int actualData =0;

int arrChannel[]={10000,10001,10002};

int sizearrChannels = 3;

ULONG TS_Begin = 0;

AddBufferChannel(10000,10000);

AddBufferChannel(10001,10000);

AddBufferChannel(10002,10000);

AOSLEEP_MSEC(10000);

GetAlignedData(pArray, ArraySize, &actualData,
arrChannel, sizearrChannels, TS_Begin); //get
aligned data from channels:10000,10001,10002 save
them in the array pData, the alignment is done by
time stamp TS_Begin

printf("\n %d \n" , ActualData);

Neuro Omega SDK User Manual V1.3 Page 37

Function Function syntax and example

printf("\n %d \n" , TS_Begin);

GetChannelData

Syntax:

int GetChannelData(int ChannelsId,int16* pData,int
ArrSizeWords,int *DataCapture);

Function:

Used to get data for the specified channel

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

 ChannelId: The channel id which we want to get data for

 pData: Array of data

 ArrSize: the size of the pData

 DataCapture: The amount of the useable data in the array

 Note: The pData will contain a block of data in in the following

format, for example:

byte 1-2 : SizeOFtheBlock in words (1 word =2Byte)
including the samples in this block

byte 3 BlockType (in our case alwayes will be 'd'
or 100)

byte 4 Not used

byte 5-6 ChannelNumber the id of the channel this
block belongs to

byte 7 Unit number ,this value valid only for
segmented data

byte 8 Not used

byte 9-12 TimeStamp of the first sample of the
block you will have to reorder them [byte10 byte9
byte12 byte11]

byte 13-14 OverFlowCount the over flow of the time
stamp – Future use

byte 15-16 First sample

byte 17-18 Second sample

In order to calculate the number of samples in this channel, do the

following:

HeaderSize=14bytes

HeadrSizeWord=14bytes/2

samplescount=SizeOFtheBlock-HeaderSizeWord

 = (SizeOFtheBlock-14)/2

Neuro Omega SDK User Manual V1.3 Page 38

Function Function syntax and example

Example:

int ChannelsId=10256;

int16* pData=new int16[100000];

int ArrSizeWords = 10000;

int DataCapture=0;

AddBufferChannel(10256,10000);

GetChannelData(ChannelsId, pData, ArrSizeWords,
&DataCapture);

ClearBuffers Syntax:

Void ClearBuffers();

Function:

Used to clear all the data from the buffers

Example:

ClearBuffers ();

GetNextBlock Syntax:

void GetNextBlock(int16 * arraydata,int
sizeOfArrayWords,int* realDataSizeWords)

Function:

Used to get the next new block data, the data should be parsed using

StreamFormat.h file

Function parameters:

 arraydata: Pointer to an array to hold the new data ,the data

contain stream format in order to parse the data you need some

Knowledge in our stream Format

 sizeOfArrayWords: The max size of data the array can contain

 realDataSizeWords: The count of the data copied to the array

data

 Note: StreamFormat.h file is saved in the include directory

Example:

int16 * arraydata = new int16[45000];

int sizeOfArrayWords = 45000;

int realDataSizeWords = 0;

GetNextBlock(arraydata, sizeOfArrayWords,
&realDataSizeWords);

 AO_SendBlock Syntax:

Neuro Omega SDK User Manual V1.3 Page 39

Function Function syntax and example

int SendBlock(void* streamBlock);

Function:

Used to send stream format data to the Neuro Omega system

Result:

Return is an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

 streamBlock: Contain the block of data which will be sent to the

Neuro Omega system

 Notes:

 This function for advanced users only.

 Stream format is explained in StreamFormat.h file

StartSave Syntax:

int StartSave();

Function:

Used to start saving mpx file by the Neuro Omega system

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

 Notes:

 The mpx file saved will contain the channels listed on the

Data logging Options in the S Neuro Omega

 The filename and the saving path could be set before saving

using MATLAB commands: SetSaveFileName, and

SetSavePath.

 Or by the parameters defined in the data logging(default)

 When saving start the saving button in the Neuro Omega

GUI turns to red. See Neuro Omega Manual

Example:

StartSave() //start saving on the Neuro Omeg

SetSaveFileName Syntax:

int SetSaveFileName(cChar* fileName, int size);

Function:

Used to set mpx file name saved by Neuro Omega system

Neuro Omega SDK User Manual V1.3 Page 40

Function Function syntax and example

Result:

Function returns an integer, 0 = no function errors, other number

Indicate function error (see 6)

Function parameters:

 fileName: Contains the file name.

 size: the size of the name of the file

 Note: File name must be less than 30 chars.

Example:

cChar fileName[50];

strncpy(fileName , "TestFile ",50);

SetSaveFileName(fileName , 10);

StartSave(); //start saving, the file name will be
testFile

SetSavePath Syntax:

int SetSavePath(cChar* Path , int size);

Function:

Used to set the path of the directory to save in the mpx file.

Result:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 Path: Contain the path of the directory for saving the files

 size: the size of the path name

Example:

 strncpy (path , " c:\logging_data\ ", 50); //the
path of the directory to save in

SetSavePath(path , 50);

StartSave(); //start saving, the file will be saved
at 'c:\logging_data\'

StopSave Syntax:

int StopSave();

Function:

Used to stop saving by Neuro Omega system

Result:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Neuro Omega SDK User Manual V1.3 Page 41

Function Function syntax and example

Example:

StopSave();

SendDout Syntax:

int SendDout(mask, value);

Function:

Sends output to port number 11701

Result:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 Mask: is an 8 bit hex number input as a string. This variable

masks the value, any 1 bit number changes the corresponding bit

to the number in value. A 0 bit will leave the port unchanged

 Value: the value to insert the digital channel. The value can be

any number between 0 and 2^8-1

Example:

mask = 1;

value1 = 1;

value2 = 0;

SendDout(mask, value1); //up

AOSLEEP_MSEC(10000);

SendDout(mask, value2); //down

StartDigitalStimulation Syntax:

int StartDigitalStimulation(StimChannel,
FirstPhaseDelay_mS, FirstPhaseAmpl_mA,
FirstPhaseWidth_mS, SecondPhaseDelay_mS,
SecondPhaseAmpl_mA, SecondPhaseWidth_mS, Freq_hZ,
Duration_sec, ReturnChannel);

Function:

Function used to set the parameters and start stimulation using Neuro

Omega system for the specified StimChannel

Resuls:

Returns an integer, 0 = no function errors, other number indicate

function error (see 6)

Function parameters:

See below for an illustration of the stimulation parameters.

Neuro Omega SDK User Manual V1.3 Page 42

Figure 6: Stimulation Parameters Illustration

 StimChannel: The channel we want to start stimulation on

 FirstPhaseDelay_mS: First phase delay in mSec (1)

 FirstPhaseAmpl_mA: First phase amplitude (4)

 FirstPhaseWidth_mS : The width of the first phase (3)

 SecondPhaseDelay_mS: Second phase delay in mSec (2)

 SecondPhaseAmpl_mA: Second phase amplitude (6)

 SecondPhaseWidth_mS: Second phase width (5)

 Freq_hZ: The stimulation frequency

 Duration_sec: Duration of the stimulation after which

stimulation stops

 ReturnChannel: The ID of the channel we want to return the

stimulation with(set -1 for Global return)

 Note: This function should be called before starting stimulation,

otherwise stimulation will be done using the parameters defined in

the SW GUI

Example:

StimChannel=10000;%the channel we want to start
stimualtion in

FirstPhaseDelay_mS=1.1;

FirstPhaseAmpl_mA=-3.5;

FirstPhaseWidth_mS=0.5;

SecondPhaseDelay_mS=1.5;

SecondPhaseAmpl_mA=1.5;

SecondPhaseWidth_mS=0.2;

Freq_hZ=10;

Duration_sec=30;

ReturnChannel=10001;

StartDigitalStimulation(StimChannel,FirstPhaseDelay_
mS,FirstPhaseAmpl_mA,FirstPhaseWidth_mS,SecondPhaseD
elay_mS,SecondPhaseAmpl_mA,SecondPhaseWidth_mS,Freq_
hZ,Duration_sec,ReturnChannel);

Neuro Omega SDK User Manual V1.3 Page 43

Function Function syntax and example

StopStimulation Syntax:

int StopStimulation(int ChannelNumber);

Function:

Used to stops stimulation to the stimulation source of the

ChannelNumber

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 ChannelNumber: The ID of the channel used for stimulation

 Note: In order to stop stimulation in all channels use:

ChannelNumber= -1

Example:

ChannelNumber=10000;

StopStimulation(ChannelNumber);

LoadWaveToEmbedded Syntax:

int LoadWaveToEmbedded(short* pSource,int
SamplesCount,int downSampleFactor,char* waveName)

 Function:

Used to take an analog wave and load it into the Neuro Omega system

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 pSource: array of data

 SamplesCount: number of samples (less than 8 milion)

 downSampleFactor: must be 2^N = 1, 2, 4, 8, 16

 waveName: The name of the wave

Example:

for(int i=0; i<180 ; i++)

{

 pSource[i] = sin(i);

}

SamplesCount = 150;

downSampleFactor = 2 ;

Neuro Omega SDK User Manual V1.3 Page 44

Function Function syntax and example

strncpy(waveName , " sin_wave " , 10);

LoadWaveToEmbedded(pSource, SamplesCount,
downSampleFactor, waveName);

StartAnalogStimulation Syntax:

int StartAnalogStimulation (StimChannel, waveId,
Freq_Hz, Duration_sec, ReturnChannel);

Function:

Used to set the parameters for the analog stimulation and start

stimulation on the specified channel

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 StimChannel: the channel we want to start stimulation on

 waveId: The id of the wave

 Freq_Hz: the frequency of the stimulation

 Duration_sec: duration of the stimulation

 ReturnChannel: The ID of the channel we want to return the

stimulation with (set -1 for Global return)

Example:

StimChannel= 10256;

waveId= 1;

Freq_hZ=10;

Duration_sec=30;

ReturnChannel=-1;

StartAnalogStimulation(StimChannel,waveId,Freq_Hz,
Duration_sec, ReturnChannel)

GetLatestTimeStamp Syntax:

int GetLatestTimeStamp(ULONG* plastTS);

Function:

Used to get the last time stamp

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Examples:

ULONG* plastTS = 0;

GetLatestTimeStamp(&plastTS);

printf(" \n %d \n " , plastTS);

Neuro Omega SDK User Manual V1.3 Page 45

Function Function syntax and example

TranslateNameToID Syntax:

int TranslateNameToID(cChar* ChannelName , int
nameLength , int channelID);

Function:

Used to translate the name of the channel to his ID

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 ChannelName: the name of the channel

 nameLength: the length of the name we want to translate

 channelID: the id of the channel after translation

Examples:

cChar channelName[10];

int nameLength = 10;

int channelID = 0;

strncpy(channelName, "RAW 01" , 10);

TranslateNameToID(channelName, nameLength,
&channelID);

SetChannelSaveState Syntax:

int SetChannelSaveState(int channelID,BOOL BState)

Function:

Used to Check the checkbox in the Neuro Omega Gui in v if the

statesave=1 is on or unchecked if the statesave=0 is off

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 channelID: the id of the channel

 BState: TRUE is on, FALSE is off

Examples:

BState =TRUE
channelID=10256
SetChannelSaveState(channelID , BState)

channelID=10256
BState = FALSE;
SetChannelSaveState(channelID , BState)

Neuro Omega SDK User Manual V1.3 Page 46

Function Function syntax and example

AO_SendDigitalData Syntax:

int SendDigitalData (int DigitalChannelNumber, int
mask, int value)

Function:

Used to sends digital data for specific Internal port ID

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 DigitalChannelNumber: the ID of the Internal port

 Mask: is an 8 bit hex number input as a string. This variable

masks the value, any 1 bit number changes the corresponding bit

to the number in value. A 0 bit will leave the port unchanged

 Value: the value to insert the digital channel. The value can be

any number between 0 and 2^8-1

Examples:

DigitalChannelNumber = 11230;
mask = 1;
value1 = 1;
value2 = 0;
SendDout(DigitalChannelNumber ,mask, value1); //up
AOSLEEP_MSEC(10000);
SendDout(DigitalChannelNumber ,mask, value2); //down

GetDriveDepth Syntax:

int GetDriveDepth (int* nDepth);

Function:

Used to get the drive position

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 nDepth: the depth of the drive in um (microMeter)

Examples:

int* nDepth = 0;
GetDriveDepth(&nDepth);
printf("Depth = %d\n" , nDepth);

SetThreshold Syntax:

int SetThreshold (int channelID, int
ThresholdValue_uVolt, int Direction);

Function:

Used to set the thresh hold (level line) of a channel

Results:

Neuro Omega SDK User Manual V1.3 Page 47

Function Function syntax and example

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 channelID: contain the chanel id can be only SPIKE LFP OR

segmented of the same electrode

 ThreshHoldValue_uVolt: the value of the level line in

microVolts

 Direction : the detection 1->down 2->up

Examples:

ChannelID = 10256;
ThresholdValue = 100;
Direction = 1; //down
SetThreshold(ChannelID ,ThresholdValue ,Direction);

SendText Syntax:

int SendText (char* text, int length);

Function:

Used to send text to the mpx file with the current time stamp

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 Text: array of chars

 length: the length of the text

Examples:

char text[20] = {};
strncpy(text , "the text is in the mpx file" , 20);
int length = 20;
SendText(text , length);

CheckConnectionQuality Syntax:

int CheckConnectionQuality(int* qualityType ,
real32* pQualityPercent);

Function:

Used to check the quality of the connection of the system if its poor,

medium or high

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 qualityType: poor, medium or high

 pQualityPercent: the rate of the quality connection in percent

Neuro Omega SDK User Manual V1.3 Page 48

Function Function syntax and example

Examples:

int qualityType= 0;

real32 pQualityPercent = 0;

CheckConnectionQuality(&qualityType ,
&pQualityPercent);

GetAllChannels Syntax:

int GetAllChannels(SInformation *pAllChannels,int32
ChannelCount)

 Function:

Used to return all the channels with their name and id

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 pAllChannels: a struct that include all the channels with two

fields: name and id

 ChannelCount: number of channels the user want to see

Examples:

int32 ChannelCount=220;

SInformation pAllChannels[220];

GetAllChannels(SInformation *pAllChannels,int32
ChannelCount)

GetCutOffFC Syntax:

int GetCutOffFC(int channelID,real32 *dFCLP,real32
*dFCHP)

Function:

Used to return the cut-off frequency of the low and high pass filter

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 channelID: the id of the channel

 dFCLP: will contain the cut-off frequency of the low pass filter

 dFCHP: will contain the cut-off frequency of the high pass filter

Examples:

ChannelID = 10256;
real32 dFCLP = 0;
real32 dFCHP = 0;
GetCutOffFC(ChannelID , &dFCLP , &dFCHP);
printf("LP_freq = %d\n" , dFCLP);

Neuro Omega SDK User Manual V1.3 Page 49

Function Function syntax and example

printf("HP_freq = %d\n" , dFCHP);

SetChannelName Syntax:

int SetChannelName(int channelID , cChar*
newName,int NameLength)

Function:

Used to set a new name for the specified channel

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 channelID: the id of the channel

 newName: array of chars with the new name for the channel

 NameLength: the length of the new name

Examples:

int ChannelId = 10258 ;
cChar newName[10] = {};
strncpy(newName , "left Side" , 10);
SetChannelName(ChannelId , newName , 10);

GetSaveStatues Syntax:

int GetSaveStatues(int channelId , BOOL
*pSaveState)

Function:

Used to get the save status of the specified channel

Results:

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 channelId: the id of the channel

 pSaveState: 1 if the save state is true, 0 if the save state is

false

Examples:

int ChannelId = 10256;
BOOL pSaveState = FALSE;
GetChannelSaveState(ChannelId , &pSaveState)
printf("status = %d\n" , pSaveState);

AO_GetStopMotorTS Syntax:

int GetStopMotorTS (uint32* pLastStopTS)

Function:

Used to get the last time stamp when the motor stopped moving

Results:

Neuro Omega SDK User Manual V1.3 Page 50

Function Function syntax and example

Returns an integer, 0 = no function errors, other number indicates

function error (see 6)

Function parameters:

 pLastStopTS: the last time stamp when the motor stopped

Examples:

uint32 pLastStopTS =0;
GetStopMotorTS(&pLastStopTS);
printf("StopMotorTS = %d\n" , pLastStopTS);

Neuro Omega SDK User Manual V1.3 Page 51

Table 6: MATLAB Function Return Cases

Function

return
Result

0 No compiling error

3 Cannot do stimulation on the specified channel

4 The system is not connected

5 The Device Driver is Null

6 The name of the channel does not existed

7 Out of range

8 The channel id does not existed

9 Null parameter

10 The system is already connected

11 Index not found

12 There is no match

13 Sampling rate is not the same

14 Gap in data

15 Wrong value for the Duration parameter

Neuro Omega SDK User Manual V1.3 Page 52

3 Technical Specifications

 Specification

Description MATLAB C++

Min. System

requirements

1Gb Ethernet, x64, Windows 7, MATLAB 2014a

Versions 2010-2014 visual studio

Response time (full loop)

– Wait data to Stimulate

average: 15.2435 msec

standard deviation: 6.2846 msec

average: 6.7136 msec

standard deviation: 2.6106 msec

Response time (full loop)

– Wait data to Digital

out

average: 14.6384 msec

standard deviation: 6.5194 msec

average: 5.1992 msec

standard deviation: 1.8028 msec

Biphasic stimulation

limits

Max pulse width – 0.5ms

Min pulse width – 20us

Frequency – 300 Hz

Max total stimulation

simultaneous

100mA

Micro stimulation output <100uA

Arbitrary biphasic

stimulation limits

Max pulse width – 0.5ms

Min pulse width – 20us

Max waveform length – 1000000 samples

Max duty cycle –

Arbitrary analog

stimulation limitations

300Hz – 6000 Hz

Macro stimulation output <7mA (macro contacts)

<15mA (ECOG, Nerve)

Neuro Omega SDK User Manual V1.3 Page 53

4 Use Case Code

4.1 MATLAB Use Case #1

Explanation about the use case:

After connecting to the Neuro Omega system, start gathering data for the segmented channel #1.

Start sending the command get channel data and every time the level line is crossed send a

digital trigger. At the end of the use the connection to the Neuro Omega system is closed.

function [] = TestingCloseLoopStimulation()

DspMac = 'bc:6a:29:e1:49:bf';
value = AO_DefaultStartConnection(DspMac);

for j=1:100
 pause(1);
 ret = AO_IsConnected;
 if ret ==1
 fprintf('connected')
 break;
 end
end

segChannelId = AO_TranslateNameToID('SEG 01' , 6);
BufferSizemSec = 10000;

AO_AddBufferingChannel(segChannelId,BufferSizemSec);

 [Result,pData,DataCapture] = AO_GetChannelData(segChannelId);
while(k<1000)
 yes = 0 ;
 unit0 = pData(4);
 if (unit0 == 0 && DataCapture >0)
 yes =1 ;
 AO_SendDout('0x05' , 3);
 end

 [Result,pData,DataCapture] = AO_GetChannelData(segChannelId);
 AO_SendDout('0x05' , 0);

 k=k+1;
end

AO_CloseConnection();

While(1){
ret = AO_IsConnected;
if ret == 0

 fprintf('disconnected')

 break;
end

end

Neuro Omega SDK User Manual V1.3 Page 54

end

4.2 MATLAB Use Case #2

Explanation about this use case:

After connecting to the Neuro Omega system, start collecting for the three SPK channels 10256,

10257 and 10258 (Micro SPK channel 1, Micro SPK channel 2 and Micro SPK channel 3). Then

start saving the data on mpx file. Call the get aligned command and get the data from the three

channels arranged one after another. At the end of the use case we making sure the connection to

the Neuro Omega system is closed.

function [res,Result,pData,DataCapture,TS_FirstSample] = Testing_GetAlignedData()
'Testing Default start connection command ';
DspMac = 'c8:a0:30:27:21:bf';
value = AO_DefaultStartConnection(DspMac);

for j=1:100
 pause(1);
 ret = AO_IsConnected;
 if ret ==1
 fprintf('connected')
 break;
 end
end

'gather data for the three SPK channels 10256, 10257, 10258';
res(1) = AO_AddBufferingChannel(10256,10000);
res(2) = AO_AddBufferingChannel(10257,10000);
res(3) = AO_AddBufferingChannel(10258,10000);

arr_SPK=[10256,10257,10258];
sizeArr_SPK = length(arr_SPK);

ret = AO_StartSave(); %start save the data
 if ret >0
 'missing Saving File';

 end
pause(10);

[Result,pData,DataCapture,TS_FirstSample] =

AO_GetAlignedData(arr_SPK,sizeArr_SPK);

pause(20);

AO_StopSave()%stop save the data

AO_CloseConnection();
While(1){

ret = AO_IsConnected;
if ret == 0

 fprintf('disconnected')

 break;
end

Neuro Omega SDK User Manual V1.3 Page 55

end

end

4.3 MATLAB Use Case #3

Explanation about this use case:

After connecting to the Neuro Omega system, start generating stimulation trains which are repeated
in a burst frequency

note: stimulation parameters need to be set according to the
AO_StartDigitalStimulation command.

'Testing Default start connection command ';
DspMac = 'bc:6a:29:e1:49:bf';
value = AO_DefaultStartConnection(DspMac);

for j=1:100
 pause(1);
 ret = AO_IsConnected;
 if ret ==1
 fprintf('connected')
 break;
 end
end

train_freq=100; % the frequency between the pulses (for example 100Hz)
number_of_pulses=3; % number of pulses in every train (for example 3

pulses)
burst_freq=10; % burst frequency between the trains (for example 10Hz)
number_of_bursts=100; % total number of bursts in a stimulation season
stim_channel_name= 'SPK 01'; % stimulation channel name as appears in

software
nameLength=length(stim_channel_name);
stim_channel=AO_TranslateNameToID(stim_channel_name , nameLength);

for i=1:number_of_bursts
 [Result] = AO_StartDigitalStimulation(stim_channel, 0, -0.09, 0.06, 0,

0.09, 0.06, train_freq, (number_of_pulses/train_freq)-

0.1*(number_of_pulses/train_freq), -1);
 pause((1/burst_freq));
end
[Result] = AO_StopStimulation(-1);

Neuro Omega SDK User Manual V1.3 Page 56

5 Troubleshooting Guideline

5.1 MEX Compiler Error

This error can occur when there the .NET framework is not the correct version or the

Windows SDK is not installed correctly or at all.

To start the troubleshooting, enter the following command into the MATLAB command

window:

 cc = mex.getCompilerConfigurations()

a. In case the following message appears, check if the Windows SDK and

the .NET framework 4.0 are installed

Figure 7: MATLAB Compiler Configuration

i. Remove the Microsoft Windows SDK and the .Net Framework

through the control panel uninstall programs.

ii. Download the .NET Framework V4.0 and above from Microsoft

and install

iii. Download the Microsoft Windows SDK for Windows 7 from

Microsoft and install

 Notes:

 Make sure that the .NET Framework 4.0 or above is installed before the
Microsoft Windows SDK for Windows 7

 Windows 7 ships with only .NET Framework 3.5. The MEX compilation

requires .NET Framework 4.0 and above.

b. In case the message in Figure 7: MATLAB Compiler Configuration does not

appear, there is no compiler installed on the system, do the following:

Neuro Omega SDK User Manual V1.3 Page 57

iv. MATLAB recommends installing Microsoft Visual C++ Express

2010 and the Microsoft Windows SDK for Windows 7 from

Microsoft

 Warning:

 One common error that is seen is Return Code 5100. This indicates that
there were existing installs of redistributable Microsoft Visual C++ and that
installation could not proceed. In this case, you need to uninstall the

existing Visual C++ redistributable installations.

5.2 Missing Runtime Libraries

MATLAB will fail to load MEX-files if it cannot find all DLLs referenced by the MEX-

files; the DLLs must be in the same directory as the MEX-file.

 Notes:

 On 64-bit Windows, the MEX files require the Visual Studio runtime
libraries.

 If an error occurs follow the link that suggested in the line

 The information took from:

http://warpproject.org/trac/wiki/howto/MEX_Compile

In case the EthernetStandAlone.lib is missing from the include file the following message will appear:

In case EthernetStandAlone.h is missing from the include file the following message will appear:

Neuro Omega SDK User Manual V1.3 Page 58

5.3 Supported and Compatible Compilers – Release

2010B

Figure 8: Supported Compilers for Windows 32bit (taken from the MathWorks
website)

Neuro Omega SDK User Manual V1.3 Page 59

Figure 9: Supported Compilers for Windows 64bit (taken from the MathWorks
website)

